3.5.51 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^2 (d+e x)} \, dx\) [451]

Optimal. Leaf size=240 \[ -\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {\sqrt {c} \sqrt {d} \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {d}} \]

[Out]

1/2*(3*a*e^2+c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))*c^(1/2)*d^(1/2)/e^(1/2)-1/2*(a*e^2+3*c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e
^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*a^(1/2)*e^(1/2)/d^(1/2)-(-c*d*x+a*e)*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(1/2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {863, 826, 857, 635, 212, 738} \begin {gather*} -\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x}+\frac {\sqrt {c} \sqrt {d} \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (a e^2+3 c d^2\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-(((a*e - c*d*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (Sqrt[c]*Sqrt[d]*(c*d^2 + 3*a*e^2)*ArcTanh[
(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[
e]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[d])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 826

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m +
 2*p + 2))), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx &=\int \frac {(a e+c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\frac {1}{2} \int \frac {-a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {1}{2} \left (a e \left (3 c d^2+a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac {1}{2} \left (c d \left (c d^2+3 a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\left (a e \left (3 c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\left (c d \left (c d^2+3 a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {\sqrt {c} \sqrt {d} \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 213, normalized size = 0.89 \begin {gather*} -\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {d} \sqrt {e} (a e-c d x) \sqrt {a e+c d x} \sqrt {d+e x}-\sqrt {c} d \left (c d^2+3 a e^2\right ) x \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )+\sqrt {a} e \left (3 c d^2+a e^2\right ) x \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {e} \sqrt {d+e x}}{\sqrt {d} \sqrt {a e+c d x}}\right )\right )}{\sqrt {d} \sqrt {e} x \sqrt {(a e+c d x) (d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-((Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[d]*Sqrt[e]*(a*e - c*d*x)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x] - Sqrt[c]*d*
(c*d^2 + 3*a*e^2)*x*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])] + Sqrt[a]*e*(3*c*d^2
+ a*e^2)*x*ArcTanh[(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])/(Sqrt[d]*Sqrt[a*e + c*d*x])]))/(Sqrt[d]*Sqrt[e]*x*Sqrt[(a*e
 + c*d*x)*(d + e*x)]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1299\) vs. \(2(202)=404\).
time = 0.08, size = 1300, normalized size = 5.42

method result size
default \(\text {Expression too large to display}\) \(1300\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

e/d^2*(1/3*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)+1/2*(a*e^2-c*d^2)*(1/4*(2*c*d*e*(x+d/e)+a*e^2-c*d^2)/
c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*a*e^2-1/2*c*d^2+c*d*e*(x
+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)))+1/d*(-1/a/d/e/x*(a*d*e+(a*
e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+3/2*(a*e^2+c*d^2)/a/d/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+
c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*
d^2)^2)/c/d/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^
(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*
e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*
x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)))+4*c/a*(1/8*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*
e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d
/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*a*e^2+1/2*c*d^2+c
*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))))-e/d^2*(1/3*(a*d*e+(a*e^2+c*d^2
)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1
/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d
^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/
2*a*e^2+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^
(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((x*e + d)*x^2), x)

________________________________________________________________________________________

Fricas [A]
time = 3.68, size = 1212, normalized size = 5.05 \begin {gather*} \left [\frac {{\left (c d^{2} x + 3 \, a x e^{2}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e^{2} + c d^{2} e + a e^{3}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) + {\left (3 \, c d^{2} x + a x e^{2}\right )} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} - 4 \, {\left (c d^{3} x + a d x e^{2} + 2 \, a d^{2} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ) + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (c d x - a e\right )}}{4 \, x}, \frac {{\left (3 \, c d^{2} x + a x e^{2}\right )} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} \log \left (\frac {c^{2} d^{4} x^{2} + 8 \, a c d^{3} x e + a^{2} x^{2} e^{4} + 8 \, a^{2} d x e^{3} - 4 \, {\left (c d^{3} x + a d x e^{2} + 2 \, a d^{2} e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {\frac {a}{d}} e^{\frac {1}{2}} + 2 \, {\left (3 \, a c d^{2} x^{2} + 4 \, a^{2} d^{2}\right )} e^{2}}{x^{2}}\right ) - 2 \, {\left (c d^{2} x + 3 \, a x e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}}}{2 \, {\left (c^{2} d^{3} x + a c d x e^{2} + {\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} e\right )}}\right ) + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (c d x - a e\right )}}{4 \, x}, \frac {{\left (c d^{2} x + 3 \, a x e^{2}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} \log \left (8 \, c^{2} d^{3} x e + c^{2} d^{4} + 8 \, a c d x e^{3} + a^{2} e^{4} + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e^{2} + c d^{2} e + a e^{3}\right )} \sqrt {c d} e^{\left (-\frac {1}{2}\right )} + 2 \, {\left (4 \, c^{2} d^{2} x^{2} + 3 \, a c d^{2}\right )} e^{2}\right ) + 2 \, {\left (3 \, c d^{2} x + a x e^{2}\right )} \sqrt {-\frac {a e}{d}} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d^{2} x e + a^{2} x e^{3} + {\left (a c d x^{2} + a^{2} d\right )} e^{2}\right )}}\right ) + 4 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (c d x - a e\right )}}{4 \, x}, -\frac {{\left (c d^{2} x + 3 \, a x e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}} \arctan \left (\frac {\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (2 \, c d x e + c d^{2} + a e^{2}\right )} \sqrt {-c d e^{\left (-1\right )}}}{2 \, {\left (c^{2} d^{3} x + a c d x e^{2} + {\left (c^{2} d^{2} x^{2} + a c d^{2}\right )} e\right )}}\right ) - {\left (3 \, c d^{2} x + a x e^{2}\right )} \sqrt {-\frac {a e}{d}} \arctan \left (\frac {{\left (c d^{2} x + a x e^{2} + 2 \, a d e\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {-\frac {a e}{d}}}{2 \, {\left (a c d^{2} x e + a^{2} x e^{3} + {\left (a c d x^{2} + a^{2} d\right )} e^{2}\right )}}\right ) - 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} {\left (c d x - a e\right )}}{2 \, x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*((c*d^2*x + 3*a*x*e^2)*sqrt(c*d)*e^(-1/2)*log(8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*sqrt(
c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(2*c*d*x*e^2 + c*d^2*e + a*e^3)*sqrt(c*d)*e^(-1/2) + 2*(4*c^2*d^2*x^2 +
 3*a*c*d^2)*e^2) + (3*c*d^2*x + a*x*e^2)*sqrt(a/d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*
a^2*d*x*e^3 - 4*(c*d^3*x + a*d*x*e^2 + 2*a*d^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a/d)*e^(1/2
) + 2*(3*a*c*d^2*x^2 + 4*a^2*d^2)*e^2)/x^2) + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(c*d*x - a*e))/x,
1/4*((3*c*d^2*x + a*x*e^2)*sqrt(a/d)*e^(1/2)*log((c^2*d^4*x^2 + 8*a*c*d^3*x*e + a^2*x^2*e^4 + 8*a^2*d*x*e^3 -
4*(c*d^3*x + a*d*x*e^2 + 2*a*d^2*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(a/d)*e^(1/2) + 2*(3*a*c*d
^2*x^2 + 4*a^2*d^2)*e^2)/x^2) - 2*(c*d^2*x + 3*a*x*e^2)*sqrt(-c*d*e^(-1))*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 +
(c*d*x^2 + a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(-c*d*e^(-1))/(c^2*d^3*x + a*c*d*x*e^2 + (c^2*d^2*x^2 + a*c
*d^2)*e)) + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*(c*d*x - a*e))/x, 1/4*((c*d^2*x + 3*a*x*e^2)*sqrt(c*
d)*e^(-1/2)*log(8*c^2*d^3*x*e + c^2*d^4 + 8*a*c*d*x*e^3 + a^2*e^4 + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)
*e)*(2*c*d*x*e^2 + c*d^2*e + a*e^3)*sqrt(c*d)*e^(-1/2) + 2*(4*c^2*d^2*x^2 + 3*a*c*d^2)*e^2) + 2*(3*c*d^2*x + a
*x*e^2)*sqrt(-a*e/d)*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt
(-a*e/d)/(a*c*d^2*x*e + a^2*x*e^3 + (a*c*d*x^2 + a^2*d)*e^2)) + 4*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*
(c*d*x - a*e))/x, -1/2*((c*d^2*x + 3*a*x*e^2)*sqrt(-c*d*e^(-1))*arctan(1/2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 +
 a*d)*e)*(2*c*d*x*e + c*d^2 + a*e^2)*sqrt(-c*d*e^(-1))/(c^2*d^3*x + a*c*d*x*e^2 + (c^2*d^2*x^2 + a*c*d^2)*e))
- (3*c*d^2*x + a*x*e^2)*sqrt(-a*e/d)*arctan(1/2*(c*d^2*x + a*x*e^2 + 2*a*d*e)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^
2 + a*d)*e)*sqrt(-a*e/d)/(a*c*d^2*x*e + a^2*x*e^3 + (a*c*d*x^2 + a^2*d)*e^2)) - 2*sqrt(c*d^2*x + a*x*e^2 + (c*
d*x^2 + a*d)*e)*(c*d*x - a*e))/x]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{x^{2} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**2/(e*x+d),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(x**2*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]
time = 1.37, size = 373, normalized size = 1.55 \begin {gather*} \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e} c d + \frac {{\left (3 \, a c d^{2} e + a^{2} e^{3}\right )} \arctan \left (-\frac {\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}}{\sqrt {-a d e}}\right )}{\sqrt {-a d e}} - \frac {{\left (\sqrt {c d} c^{2} d^{3} e^{\frac {1}{2}} + 3 \, \sqrt {c d} a c d e^{\frac {5}{2}}\right )} e^{\left (-1\right )} \log \left ({\left | -\sqrt {c d} c d^{2} e^{\frac {1}{2}} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt {c d} a e^{\frac {5}{2}} \right |}\right )}{2 \, c d} - \frac {{\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} a c d^{2} e + 2 \, \sqrt {c d} a^{2} d e^{\frac {5}{2}} + {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} a^{2} e^{3}}{a d e - {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*c*d + (3*a*c*d^2*e + a^2*e^3)*arctan(-(sqrt(c*d)*x*e^(1/2) - sqrt(
c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))/sqrt(-a*d*e))/sqrt(-a*d*e) - 1/2*(sqrt(c*d)*c^2*d^3*e^(1/2) + 3*sqrt(c
*d)*a*c*d*e^(5/2))*e^(-1)*log(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x
 + a*x*e^2 + a*d*e))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c*d) - ((sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x +
a*x*e^2 + a*d*e))*a*c*d^2*e + 2*sqrt(c*d)*a^2*d*e^(5/2) + (sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*
x*e^2 + a*d*e))*a^2*e^3)/(a*d*e - (sqrt(c*d)*x*e^(1/2) - sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{x^2\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)), x)

________________________________________________________________________________________